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Isotropic-to-cholesteric transition in liquid crystal elastomers

M. Warner
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 15 August 2002; published 15 January 2003!

A liquid crystal elastomer tries to spontaneously elongate on entering the locally nematic phase, but may
have to twist to reduce its Frank elastic energy. The extremes are a conventional, transverse cholesteric
structure~where it reduces its Frank energy!, and a uniformly aligned state~where it can maximally sponta-
neously extend and reduce its elastic energy!. Between these it can adopt a conical state where there is also
bend but equally a partial satisfaction of the elastic requirements. A line of first-order transitions between
conical and transverse states ends and becomes a line of second-order transitions, depending on chain anisot-
ropy, the ratio of the Frank bend and twist constants, and on the elastic modulus reduced by the bend energy.
Continuous and discontinuous variation of cone angles, and spontaneous elongations and shears are given, as
are analytic forms for the singular variation of director as cones are lost to the transverse state. The variation
of the multicritical point with the ratio of Frank constants is also given.

DOI: 10.1103/PhysRevE.67.011701 PACS number~s!: 61.30.2v, 61.30.Cz, 61.30.Vx, 64.70.Md
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I. INTRODUCTION

We address the question of the conformations of a bl
of chiral rubber which on cooling tries to enter the nema
or cholesteric states. Nonchiral rubber is known to extend
up to several hundred percents on entering the monodom
nematic state. The network chains become elongated by
nematic orientational field and then strain the network wh
they comprise. When the chains are chiral, they would like
form a cholesteric state where the director twists helica
instead. Although a rubber can in general allow choleste
monodomain order@1#, a rubber starting from the isotropi
state suffers an energy cost since the spontaneous ne
strains would be in different directions at different plac
along the helix and a compromise strain must be found.

This problem has recently been addressed by Pelco
and Meyer@2#. They employed elasticity theory in the linea
continuum limit which is a qualitatively excellent way t
proceed. It may give inaccuracies at the high spontane
strains observed in liquid crystal elastomers and constanc
volume is difficult to implement in their approach. Deform
tions must be volume preserving in soft solids. Their pred
tions must, however, be qualitatively correct. We resolve
problem using nonlinear rubber elasticity theory which
moves these quantitative quibbles.

Since the first classical proposals to subject cholest
liquid crystals to external fields@3,4#, there has been interes
in the so-called conical state. Fields along the helix axis
duce the director to rotate out of the perpendicular plane o
the surface of a cone that is explored as one moves down
helix. The reduction in field energy associated with coni
alignment towards the field is resisted by the creation
bend Frank elastic energy plus an increase in the twist
ergy. There are difficulties in observing the conical state
fluids @3#. Solid cholesterics additionally offer mechanic
strain fields to couple to the helix. Strains along the he
have been analyzed and are predicted@5,6# to produce a
conical state. However, for geometrical reasons longitud
strains are also difficult to apply to monodomain choleste
elastomers. Their helix axes are perpendicular to the flat
1063-651X/2003/67~1!/011701~6!/$20.00 67 0117
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face of the monodomain strips produced by the Freib
technique@1#. This was another reason why Pelcovits a
Meyer were interested in the isotropic to cholesteric tran
tion where there may be grounds for expecting a conical s
to form spontaneously.

Consider a block of elastomer deforming byl= on trans-
forming from the isotropic to the ordered state. Let the pit
axis be the pseudovectorp̂, if there is a cholesteric ordering
and this will be theẑ axis if a specific coordinate system
chosen.

The director in these coordinates is

n̂5sin~u!cos~f!x̂1sin~u!sin~f!ŷ1cos~u!ẑ, ~1!

wheref5qz is the azimuthal angle andu is the cone angle
~our definition ofu is the complement of that of Pelcovit
and Meyer!. The director in this conical cholesteric advanc
uniformly, tracing out a helix of pitchp52p/q. Sincep̂ is a
pseudovector,f is a scalar, andp̂→2p̂ does not change the
sense of the helix. There is a twofold symmetry axis perp
dicular to the helix andn̂→2n̂ invariance is also respected
Thus, although termed ‘‘conical,’’ this type of cholester
cannot be polar along their helix axis as a result of its dir
tor tilt. ~For this, biaxiality misaligned with the local princi
pal axes would be required.! Since the system is invarian
undern̂→2n̂ and p̂→2p̂, it might be more appropriate to
term it an ‘‘hour-glass’’ phase. We shall retain the name co
cal.

A quite general distortion is, in these coordinates,

l= 5S 1/Al 0 lxz

0 1/Al lyz

0 0 l
D . ~2!

It is trivial to see that det(l= )51, that is the constancy o
volume during deformation has been built in. Uniform exte
sion (l.1) or compression (l,1) along the helix, and
compression/extension (1/Al) in the plane perpendicular to
©2003 The American Physical Society01-1
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the helis axis, is assumed—variation of any of these stra
would cause problems with compatibility. See Ref.@5# for a
discussion of this strain in this context. No compatibili
problem with shearslxz(z) and lyz(z) arises from their
variation with z along the helical pitch. By contrast, the
conjugate strainslzx andlzy , which would also have to vary
with z, leads to a serious compatibility mismatch, e.
]lzx /]z5]lzz/]x. Let the direction of the projection ofn̂
onto the plane perpendicular top̂ be m̂. By symmetry the
shearslxz andlyz can only be projections onto thex-y co-
ordinates of the shearlmpm̂p̂ in the p-m plane. In a
coordinate-free representation we thus have forl= ,

l= 5~l21/Al!p̂p̂11/Ald=1lmpm̂p̂. ~3!

The requirement of compatibility is in effect that the we
defined, spatially varying displacements of the matrix ex
The suitable ones,umm̂ in the localm̂ direction, are shown
in Fig. 1.

When the rubber spontaneously forms the cholest
state, an underlying nematic order,Q ~we assume it is locally
approximately uniaxial in character!, will be established.
With it comes the necessity of spontaneous mechanical
tortions and the onset of Frank elasticity, both of which
calculate below. The system finds the optimal degree of n
atic order. Since the energy scale for nematic ordering
dominant, we shall for simplicity assume that the ordering
given~we indicate below the points at which it enters!, rather
than calculating it explicitly as Pelcovits and Meyer@2# did
in their consideration of this problem. However, the direc
configurations and elastic distortions that are adopted
transition are not necessarily the optimal ones that would
found in a naturally uniform system because of the geome
cal competitions between twist, bend, and elongation.

II. CHOLESTERIC TWIST AND BEND ENERGY

The Frank twist-bend elastic energy density is

FFr5
1
2 K2@ n̂•~“3n̂!1q0#21 1

2 K3@ n̂3~“3n̂!#2. ~4!

When the latter, bend term is absent and elastic effects
no role, the twist energy will be minimized when twist tak
its natural value, that isn̂•(“3n̂)52q0. The Frank twist

FIG. 1. The cholesteric conical state. The angleu of the director

n̂ is measured from the pitch axisp̂. The vectorm̂ is along the

projection ofn̂ in the plane perpendicular top̂. Displacementu in

the m̂ direction, varying in thez direction (p̂), gives rise to shears
lmp(z). For clarity these are shown shifted along the helix a
from where they are actually occurring.
01170
s

,

t.

ic

is-

-
is
s

r
n
e
i-

ay

and bend elastic constants are, respectively,K2 andK3. They
depend on the degree of underlying nematic orderQ. The
natural cholesteric state is where the director is transvers
p̂, that is where the conical angleu5p/2. The twist wave
number in the natural state isqo52p/p, wherep is the pitch
of the helix.

The critical vector which characterizes both twist a
bend is“3n̂52sinu f8(cosf,sinf,0). It is then straightfor-
ward to derive the Frank-free energy density:

FFr5
1
2 K3q0

2@g21~ q̃212q̃ cos2u!21q̃2cos2u~12cos2u!#.
~5!

We have extracted an energy density scale1
2 K3q0

2 which

leaves behind the dimensionless reduced wave numbeq̃
5q/qo and elastic constant ratiog5K3 /K2 ~following the
notation of Pelcovits and Meyer!.

We now minimize with respect to the reduced wave ve
tor ]F tot /]q̃50. A simple relation between reduced wav
vector and cone angle emerges

q̃5
1

11~g21!cos2u
. ~6!

Takeg.1, that isK2,K3—the physically realistic regime
Inverting Eq.~6! to give cos2u5@(12q̃)/q̃#@1/(g21)#, shows
that q̃ is restricted to 1/g<q̃<1, to ensure that cosu is real
and <1. If the pitch changes at all, it lengthens. We ha
solved a restricted part of the problem: if a cholesteric sp
has a conical distortion imposed upon it, what is the result
optimal period of the helix?

At the optimal period, the free energy density for a fix
cone angle is

FFr5
1
2 K3q0

2 cos2u

sin2u1g cos2u
. ~7!

When the cone angleu5p/2 the free energy is zero~the
natural twisted state is achieved! and whenu50 the free
energy density is 1/g in reduced units, or equivalently12 K2q0

2

in real units~there is neither twist nor bend present and
penalty is paid for not being at the natural state of twist,qo).
The state of the system will be somewhere between th
extremes because of the competition with the rubber ela
energy which we consider below.

III. RUBBER ELASTIC ENERGY

A classical, Gaussian model for the rubber elastic f
energy, generalized to nematic elastomers and valid for la
distortions up to many 100%, is@5#

Fel5
1
2 mTr~,= 0•l= T

•,=21
•l= !, ~8!

where m is the shear modulus for small distortions in th
isotropic state. The shape ellipsoids characterising the Ga
ian chain shape in the isotropic and in the locally nematica
ordered cholesteric states are, respectively,
1-2



nd
y,

o

pe

rm
er
r
p

nt

s

con-

y

stic

ree
the

or.
rgy

k

rate
of
uch

n-
-

ssion

e

ISOTROPIC-TO-CHOLESTERIC TRANSITION IN . . . PHYSICAL REVIEW E67, 011701 ~2003!
,= 05ad= , ~9!

,=215~1/,'!d=1~1/, i21/,'!n̂n̂ ~10!

~the latter being given as its inverse!. The chain anisotropy
r 5, i /,' , the ratio of the effective step lengths parallel a
perpendicular to the director, will be important. At isotrop
r 51 and both these step lengths are equal toa. A factor of, i

can be extracted from,=21 to leave behindrd=2(r 21)n̂n̂.
The nematic order induces shape anisotropy via the ratir:
in general for small orderr 21;Q. For the simple freely
jointed rod model of polymers one has, i5a(112Q) and
,'5a(12Q) for all values of the order. Inserting the sha
tensors inFel one obtains

Fel5
1
2 m

a

, i
TrXF S l2

1

Al
D p̂p̂1

1

Al
d=1lmpp̂m̂G•@rd=

2~r 21!n̂n̂#•F S l2
1

Al
D p̂p̂1

1

Al
d=1lmpm̂p̂G C.

~11!

We multiply this out, usingn̂•p̂5cosu and n̂•m̂5sinu and
m̂•p̂50,

Fel5
1
2 m

a

, i
F r S l21

2

l
1lmp

2 D2~r 21!S cos2uS l22
1

l D
12 sinu cosulmpl1

1

l
1lmp

2 sin2u D G . ~12!

The shearlmp obtains by minimizingF over lmp,

lmp5
~r 21!sinu cosu

r 2~r 21!sin2u
l. ~13!

The shear vanishes naturally for a transition to a unifo
nematic (u50) and also to a standard, transverse cholest
(u5p/2) that we shall denote byT. One can return the shea
to the free energy to yield a resultant energy dependent u
only the cone angle and elongation along the pitch axis,

Fel5
1
2 m

a

, i
F rl2

r 2~r 21!sin2u
1

2r 2~r 21!sinu2

l G .

~14!

This energy can in turn be minimized over elongationsl at
fixed cone angle and yields a spontaneous distortionlm con-
ditional on the choice of cone angleu,

lm
3 5

1

2r
@r 2~r 21!sin2u#@2r 2~r 21!sin2u#. ~15!

One can check that it yields the usual result for the spo
neous distortionlm5r 1/3 for the isotropic to uniform nem-
atic case, when sinu50. If the cholesteric energy dominate
and sin2u51 ~cone angleu5p/2), then the rubber is twisted
01170
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to the classical transverse cholesteric state. There is a
traction alongp̂ of lm5@(r 11)/2r #1/3,1 associated with
this transition.

Returninglm(sin2u) to F one finally obtains a free energ
density that only depends on angle:

Fel5
1
2 m

3a

, i

r 1/3

22/3F @2r 2~r 21!sin2u#2

r 2~r 21!sin2u
G 1/3

. ~16!

Before the addition of Frank elastic terms, the rubber ela
free energy is minimal atu50, that is a uniform state which
has optimally elongated on entering the nematic state.

IV. MINIMIZATION OF THE TOTAL FREE ENERGY
DENSITY

We add together the liquid crystal and rubber elastic f
energy densities that have been optimized over all but
cone angleu:

F tot5
1
2 K3q0

2H cos2u

11~g21!cos2u

1z
3

~r 21!2 F @r 111~r 21!cos2u#2

11~r 21!cos2u
G 1/3J . ~17!

The energy scaleK3q0
2/2 has been extracted as a prefact

The ratio of the rubber elastic to the Frank elastic ene
scales is denoted by

z5@m~r 21!2/~K3q0
2!#F a

, i

r 1/3

22/3G . ~18!

We refer to this simply as the reduced modulus.
The ratio AK/m(r 21)2 ~taking a representative Fran

constantK) is the nematic penetration depthj, since it de-
termines how deeply the surface orientation can penet
into a bulk of a different orientation by the influence
Frank elasticity. Mostly, the rubber modulus presents a m
larger energy than that associated with Frank elasticity@5#.
The combinationm(r 21)2 is essentiallyD1, the de Gennes
nematic rubber elastic modulus@7# resisting director rotation
with respect to the elastic background. The deviationr 21
from isotropy drives the elastic anchoring.j is typically very
short, about 1028 m, unless the rubber modulus or the a
isotropy are very low. Theb of Pelcovits and Meyer corre
sponds asb;1/Az to our ratio z with the assorted
Q-dependent constants in the@•••# of our z corresponding
to the order parameter-dependent constants in the expre
for b.

Thus the measure of the relative energy scales isz
;1/(qoj)2 with some constants that scale harmlessly withQ
in the second@•••# in z. We expand this out to see the siz
of the reduced modulus

z5S p0

2pj D 2

5S p0

2p D 2m~r 21!2

K3
;60~r 21!2. ~19!
1-3
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This estimate is for representative valuesK3510211 N for
the bend modulus,m5105 N m22 for the rubber modulus
and p05531027 m for the intrinsic cholesteric pitch. Th
factor r can be estimated from the gel’s spontaneous elon
tion in analogous untwisted nematic phases. For the
chanically very weakly anisotropic gels of Mitchell,r 21
;0.2 andz;1 can be possible. It is easily possible, if w
take modified estimates ofK352310211 N and of m55
3104 Nm22, to obtain z;15(r 21)2. For mechanically
strong anisotropic gels, for instance main chain elastom
(r 21);60 andz can be large. On the other hand less a
isotropic gels in this limit could havez,1.

The equilibrium cone angle is given by]F tot /](cos2u)
50, that is

1

@11~g21!cos2u#2

5z
12cos2u

@r 111~r 21!cos2u#1/3@11~r 21!cos2u#4/3
.

~20!

We show in Fig. 2 the two parts of the reduced free ene
FFr5cos2u/(11(g21)cos2u) and Fel5$@r 111(r
21)cos2u#2/@11(r21)cos2u#%1/3 @with the 3z/(r 21)2 factor
omitted# separately to emphasize the competition. T
former is minimal in the transverse cholesteric at co2u
50 (u5p/2). The latter is minimal in the uniform elongate
state, cos2u50 (u50). Their sumF tot(cos2u) has two quali-
tatively different behaviors depending onr, g, andz which
we examine separately below. However, the uniform s
~where the cone is lost altogether! is neverstable since at the
upper end of the range (cos2u51) the derivative
]F tot /](cos2u)51/g2.0, independently of any elastic e
fects which find their absolute minimum there~one sees from
Fig. 2 that hereF tot8 comes entirely fromFFr8 ). For large
modulusm, and hence large reduced modulusz, the result-
ing cone angleu is clearly small but nonzero—a conica
helix results from the slightest chiral perturbation beca
the transverse shears that it induces as it induces a cone
correspond to soft elasticity@2#. Expanding relation~20! for
small u and largez one obtains at lowest order,

FIG. 2. The separate reduced Frank (FFr) and elastic (Fel22)
free energies as functions of cos2u for r 53 andg52. Their total
(F tot29) is shown for reduced elastic modulusz55. The shifts in
two of the free energies are simply to put them on the same gr
01170
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u2;
24/3r 5/3

g2

1

z
[u2;

K2qo
2

m

4

g

r 4/3

~r 21!2

, i

a
;

K2qo
2

m
.

~21!

The development of the cone angle depends on the rati
elastic totwist energies. We denote the conical state by C a
now examine the two regimes of its development and los
the T state.

( i ) Continuous conical-transverse (C-T) transition. The
minimum nearu50, that is cos2u51, for largez moves as in
Fig. 2 to smaller cos2u as z decreases. The slope o
F tot(cos2u) against cos2u at cos2u50 is ]F tot /] cos2uu051
2z/(r11)1/3. ThusF tot8 ,0 here for largez. If the minimum
approaches cos2u50 asF8(0) changes sign, thenF tot simply
has its smallest value at the end of its range, the T stat
cos2u50. Thus the critical value ofz is

zc5~r 11!1/3[mc5K3qo
2~r 11!1/3

~r 21!2

, i

a

22/3

r 1/3
, ~22!

for the stability of the transverse cholesteric when elas
effects are small compared with those ofbend. Recall thatr
is the intrinsic shape anisotropy of the network polyme
with r 51 representing isotropy, andr 21;Q representing
the nematic order.

The T state has been approached continuously from th
state. For the example ofr 53, g52, Fig. 3 showsu(z).
TheA singularity asu→p/2 comes from transforming from

cos2u to u as a variable. One can solve Eq.~20! analytically
around cos2u→0, that is,u→p/2, to obtain thisA singular-

ity,

cos2u; 1
2

~z/zc21!

2r 212r 21

3~r 11!
2~g21!

,

or

h.

FIG. 3. Cone angleu against reduced elastic couplingz for ~i!
r 53, g52—note theA singularity as the classical T state is a

proached.~ii ! r 52, g53, where the transition from conical to
transverse is now discontinuous. Metastable conical states exis
yond the jump but are not shown.
1-4
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d5p/22u;
Az/zc21

A2F2r 212r 21

3~r 11!
2~g21!G1/2. ~23!

Figure 4 shows the spontaneous elongation-contrac
along the helix axis. Asymptotically, the unwound sta
would give l5r 1/351.44 relative to its isotropic starting
point. The unwound state is far away from the reduc
moduli we display. The C state is evidently stable ove
wide range of modulusm compared with the intrinsic ben
energy scaleK3qo

2 . The T state contracts relative to the is
tropic state by@(r 11)/2r #1/350.874. Returning the sponta
neous distortionlm of Eq. ~15! to Eq.~13! gives the optimal
shearlmp(z), shown in Fig. 5. Although the shear is ve
large for a wide range of reduced moduli,z, ~but vanishing
in the T state forz,zc and in the untwisted state forz
→`) it will be hard to see. It corresponds to displaceme
in the plane perpendicular to the helix, but in a directionm
which rotates with a period along the helix axis correspo
ing to the current wave-vectorq̃ of Eq. ~6!, that is a period
p5po@11(g21)cos2u(z)#. Thus the displacement pattern
fine ~submicron! and of amplitude;lmppo , that is rather
small. It is compellingly visualised by Pelcovits and Mey
@2#.

( i i ) Multicritical C-T transition. One can see from Eq

FIG. 4. Spontaneous distortionl against reduced elastic cou
pling z for ~i! r 53, g52. ~ii ! r 52, g53, where the final jump is
to l50.909.

FIG. 5. Spontaneous shearlmp against reduced elastic couplin
z on making the transition from the isotropic to cholesteric state
~i! r 53, g52; ~ii ! r 52, g53, where the final vanishing of shea
occurs discontinuously asz is reduced.
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~23! that thed;(z/zc21)1/2 solution foru→p/2 fails at an
r mc given by the solution of the quadratic

g511
2r 212r 21

3~r 11!
. ~24!

It is straightforward to reanalyze the solution to Eq.~20!
aroundu5p/2 and one obtains

d5~z/zc21!1/4/g1/4~r mc!, ~25!

where the functiong(r mc) is relatively simple and has th
property thatg(r mc).0 for r mc.1. Thus for eachg there is
a multicritical point~that depends on the value ofg) where
the approach to the transverse cholesteric state with var
coupling z takes on the power dependence 1/4 rather t
1/2.

( i i i ) Discontinuous C-T transition. Below the multicriti-
cal point r ,r mc the behavior is quite different in that whe
the slopeF tot8 (cos2u50) becomes negative withz decreasing
below zc5(11r )1/3, there is still a minimum inF tot for
cos2u.0 which can be lower. An example of such a fre
energy is shown in Fig. 6 for whichr 52, g53. When the
cos2uminÞ0 minimum gives a free energy equal
F tot(cos2umin50), then the system jumps from C to T stat
For this pair of r and g the jump occurs at az* 51.256
which is easily obtained by solving the conditionF tot(0)
5F tot(cos2umin) above. Thisz* is markedly less thanzc
5(11r )1/351.442. The corresponding variation of con
angleu(z) with reduced elastic modulus is given in Fig.
which shows the end of stability atz* and a continuing set o
metastable conical states down toz51.2 that one indeed
expects below a first-order transition~it is hard to resolve the
metastable interval on the figure since thez range is so
large!. Figures 4 and 5 similarly show the jumps in the spo
taneous distortion~to lm5@(r 11)/2r #1/350.909) and the
shear~to zero! at the end of the C state.

For smallerg, the r at which C-T transitions becom
discontinuous is smaller, for instanceg52 has discontinuous
transitions below a multicriticalr mc51.5, corresponding to
condition Equation~24! above. The results can be summ
rized schematically in Fig. 7. The reduced moduluszc is
where the T state becomes stable and it varies withr as (r
11)1/3. Trajectory ~i! is a typical second-order transitio

r

FIG. 6. Free energyF tot against cos2u for case ~ii ! r 52,
g53, where discontinuities arise asz is reduced.
1-5
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M. WARNER PHYSICAL REVIEW E 67, 011701 ~2003!
@case~i! discussed above# while ~ii ! is first order@case~ii !#.
The multicritical anisotropyr mc varies withg by inverting
Eq. ~24! which is a simple quadratic inr.

A similar problem to this one of competition betwee
elastic and twist-bend free energies arises when a choles
structure is crosslinked into an elastomer and then any ch
material removed. There is now no natural reason for dir
tor twist. Can the cost12 K2qo

2 of retaining this twist be lost
by untwisting and incurring some perhaps smaller mech
cal elastic energy? This is the topological imprinting proble
@8# that reveals a critical balance betweenm andK2qo

2 where
untwisting can occur. We stress that this is not a transit
between a cholesteric and isotropic state as in this paper
one induced by the removal of chiral solvent that induced
initial twist.

The converse of the thermal problem that we have as
here was posed by de Gennes@9#—will mechanical compat-
ibility constraints on the spontaneous distortions in a cho
teric heated above the nematic-isotropic transition temp

FIG. 7. Reduced elastic modulusz against chain anisotropy,r.
The linezc(r ) separates conical~C! and transverse~T! cholesteric
states with continuous transitions. Forr andz below a multicritical
point this line of second-order phase transitions ends and beco
first order, the linez* separating the C and T states with a disco
tinuous transition. The location of the multicritical point varies wi
g, the ratio of the bend to twist Frank elastic constants.
s.
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ture prevent total isotropy being attained? The answe
theoretically yes, though experiments find the degree of c
ral order surviving too small to detect@10#.

We have shown that on leaving the isotropic state that~i!
the untwisted nematic state is always unstable to choles
ordering, if only of a highly conical form.~ii ! The period of
twist depends on the cone angle but only varies betweenpo
and gpo where po is the natural cholesteric pitch andg
5K3 /K2. ~iii ! There is a continuous conical to transver
transition if the reduced modulusz is lowered for suitable
(r ,g). The C-T transition becomes discontinuous beyon
multicritical point (r mc,zmc), the location of which depend
on g, a dependence we specify. Variation ofz, r, andg is
directly or indirectly possible—for instancer depends on the
nematic order parameter and is known from spontaneous
tortion and optical studies of related nematic elastomers
vary drastically. It could therefore be possible to observ
wide range of behaviors in making the transition from t
isotropic state of fabrication to the cholesteric state.

Fabricating, in the isotropic state, elastomers that mi
undergo a transition to a monodomain C or T choleste
state may simply require a variation of the Freiburg tec
nique@1# of making cholesteric monodomain rubber. Biaxi
stretch is effectively applied during the crosslinking proce
since solvent is lost while the rubber adheres to a rigid s
strate. The helix axis is then directed perpendicular to
plane of stretch. In an isotropic variant of the technique, s
a stretch would still take place. All directions in the plan
being equal, monodomain cholesteric order could be indu
by spontaneous distortions of the character of thel= of Eqs.
~2! and~3! on entering the ordered phase. This technique
prestretching during crosslinking, is also used in the Freib
technique to produce monodomain nematic rubber, e
when all processing is done in the isotropic state.

ACKNOWLEDGMENTS

I thank R.B. Meyer for suggesting this problem and co
municating drafts of Ref.@2# to me. I thank H. Finkelmann
R.B. Meyer, M.A. Osipov, R.A. Pelcovits, and E.M. Te
entjev for discussions, advice, and a critical reading of t
manuscript.

es
-

un.
@1# S.T. Kim and H. Finkelmann, Macromol. Rapid Commun.22,
429 ~2001!.

@2# R.A. Pelcovits and R.B. Meyer, Phys. Rev. E66, 031706
~2002!.

@3# R.B. Meyer, Appl. Phys. Lett.12, 281 ~1968!.
@4# P.G. de Gennes, Solid State Commun.6, 63 ~1968!.
@5# M. Warner, E.M. Terentjev, R.B. Meyer, and Y. Mao, Phy

Rev. Lett.85, 2320~2000!.
@6# Y. Mao, E.M. Terentjev, and M. Warner, Phys. Rev. E64,
041803~2001!.
@7# P.G. de Gennes, inPolymer Liquid Crystals, edited by A. Ci-

ferri, W.R. Krigbaum, and R.B. Meyer~Academic Press, New
York, 1982!.

@8# Y. Mao and M. Warner, Phys. Rev. Lett.86, 5309~2001!.
@9# P.G. de Gennes, Phys. Lett.28A, 725 ~1969!.

@10# C.D. Hasson, F.J. Davis, and G.R. Mitchell, Chem. Comm
~Cambridge! 22, 2515~1998!.
1-6


