PHYSICAL REVIEW E 67, 011701 (2003
Isotropic-to-cholesteric transition in liquid crystal elastomers
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A liquid crystal elastomer tries to spontaneously elongate on entering the locally nematic phase, but may
have to twist to reduce its Frank elastic energy. The extremes are a conventional, transverse cholesteric
structure(where it reduces its Frank enejgynd a uniformly aligned stat@vhere it can maximally sponta-
neously extend and reduce its elastic engr@etween these it can adopt a conical state where there is also
bend but equally a partial satisfaction of the elastic requirements. A line of first-order transitions between
conical and transverse states ends and becomes a line of second-order transitions, depending on chain anisot-
ropy, the ratio of the Frank bend and twist constants, and on the elastic modulus reduced by the bend energy.
Continuous and discontinuous variation of cone angles, and spontaneous elongations and shears are given, as
are analytic forms for the singular variation of director as cones are lost to the transverse state. The variation
of the multicritical point with the ratio of Frank constants is also given.
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[. INTRODUCTION face of the monodomain strips produced by the Freiburg
technique[1]. This was another reason why Pelcovits and
We address the question of the conformations of a blociMeyer were interested in the isotropic to cholesteric transi-
of chiral rubber which on cooling tries to enter the nematiction where there may be grounds for expecting a conical state
or cholesteric states. Nonchiral rubber is known to extend byo form spontaneously.
up to several hundred percents on entering the monodomain Consider a block of elastomer deforming Byon trans-
nematic state. The network chains become elongated by tHferming from the isotropic to the ordered state. Let the pitch
nematic orientational field and then strain the network whichaxis be the pseudovectpr if there is a cholesteric ordering,
they comprise. When the chains are chiral, they would like taang this will be thez axis if a specific coordinate system is
form a cholesteric state where the director twists helicallychosen.
instead. Although a rubber can in general allow cholesteric, The director in these coordinates is
monodomain ordef1], a rubber starting from the isotropic
state suffers an energy cost since the spontaneous nematic  f—sijn( 9)cog ¢)x+sin(0)sin(p)y+cog )z, (1)
strains would be in different directions at different places
along the helix and a compromise strain must be found.  where$=qz is the azimuthal angle andis the cone angle
This problem has recently been addressed by Pelcovitgur definition of 6 is the complement of that of Pelcovits
and Meyer2]. They employed elasticity theory in the linear and Meyey. The director in this conical cholesteric advances
continuum limit wr_uch. is a qua.htatlvely exc_:ellent way to uniformly, tracing out a helix of pitciy=27/q. Sinceﬁ is a
proceed. It may give inaccuracies at the high spontaneous . - A
strains observed in liquid crystal elastomers and constancy (ﬂseudovectorgb IS a scalar_, ang— —p does not chapge the
volume is difficult to implement in their approach. Deforma- sense of the helix. TheAre 1S "i‘tWOfOId Symmetry axis perpen-
tions must be volume preserving in soft solids. Their predicdicular to the helix anth— —n invariance is also respected.
tions must, however, be qualitatively correct. We resolve thelhus, although termed “conical,” this type of cholesteric
problem using nonlinear rubber elasticity theory which re-cannot be polar along their helix axis as a result of its direc-
moves these quantitative quibbles. tor tilt. (For this, biaxiality misaligned with the local princi-
Since the first classical proposals to subject cholesterigal axes would be requiredSince the system is invariant
liquid crystals to external field8,4], there has been interest undern— —n andp— —p, it might be more appropriate to
in the so-called conical state. Fields along the helix axis interm it an “hour-glass” phase. We shall retain the name coni-
duce the director to rotate out of the perpendicular plane ontoal.
the surface of a cone that is explored as one moves down the A quite general distortion is, in these coordinates,
helix. The reduction in field energy associated with conical
alignment towards the field is resisted by the creation of N 0 Ay
bend Frank elastic energy plus an increase in the twist en- 0 1N A @)
ergy. There are difficulties in observing the conical state in vz |-
fluids [3]. Solid cholesterics additionally offer mechanical 0 0 N
strain fields to couple to the helix. Strains along the helix
have been analyzed and are predicige] to produce a It is trivial to see that deX)=1, that is the constancy of
conical state. However, for geometrical reasons longitudinavolume during deformation has been built in. Uniform exten-
strains are also difficult to apply to monodomain cholestericsion (\>1) or compressionN<1) along the helix, and
elastomers. Their helix axes are perpendicular to the flat sucompression/extension () in the plane perpendicular to

n>
I
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’fﬁ/' | and bend elastic constants are, regpectiwei)andK3. They
~ ¢ n depend on the degree of underlying nematic orQerThe
; P mt /'1| \wmm | natural cholesteric state is where the director is transverse to
M i —e]—hz i } f) that is where the conical angle=w/2. The twist wave
" g ' '.U-' - number in the natural statedg=2=/p, wherep is the pitch
“y | % L,/ of the helix.

The critical vector which characterizes both twist and
FIG. 1. The cholesteric conical state. The angjief the director ~ bend iSV X n= —sinf ¢'(cosp,sing,0). It is then straightfor-

n is measured from the pitch axjs The vectorm is along the ~Ward to derive the Frank-free energy density:

projection ofn in the plane perpendicular fo. Displacements in N 2 1~ ~ 2 ~2

the m direction, varying in thez direction (), gives rise to shears Fe=2Ksdo[ Y '(q—1-qcos6)*+g°cos'd(1—cost)].

Amp(2). For clarity these are shown shifted along the helix axis ®)

from where they are actually occurring. We have extracted an energy density sc@%q% which

the helis axis, is assumed—variation of any of these strain$aves behind the dimensionless reduced wave nurgber

would cause problems with compatibility. See R fora = 9/do and elastic constant ratip=Ks/K; (following the
discussion of this strain in this context. No compatibility notation of Pelcovits and Meyger
problem with shears\,,(z) and \,,(z) arises from their We now minimize with respect to the reduced wave vec-

variation with z along the helical pitch. By contrast, their tor 0Ft0t/&a=0. A simple relation between reduced wave
conjugate straina ,, and\,, which would also have to vary vector and cone angle emerges
with z, leads to a serious compatibility mismatch, e.g.,

Iyl 2=\ ,,1X. Let the direction of the projection af 9=

onto the plane perpendicular fpbe m. By symmetry the 1+(y—1)cog
shears\,, and\,, can only be projections onto they co-

ordinates of the sheak, mp in the p-m plane. In a

1
(6)

Take y>1, that isK,<K;—the physically realistic regime.

coordinate-free representation we thus havexfor Inverting Eq.(6) to give CO~§9=[(1—5)/5][1/(7— 1)], shows
. L thatq is restricted to Iy<qg=<1, to ensure that casis real
A= (A—1\N)pp+ LN 5+ N Mp. (3) and<1. If the pitch changes at all, it lengthens. We have

solved a restricted part of the problem: if a cholesteric spiral

The requirement of compatibility is in effect that the well- has a conical distortion imposed upon it, what is the resulting
defined, spatially varying displacements of the matrix existoptimal period of the helix?
The suitable ones),;m in the localm direction, are shown At the optimal period, the free energy density for a fixed
in Fig. 1. cone angle is

When the rubber spontaneously forms the cholesteric
state, an underlying nematic ord€r(we assume it is locally N s cogd
approximately uniaxial in characerwill be established. FFr:§K3qO—Sin20+ 25 (7

I . . . 7y Ccos ¢
With it comes the necessity of spontaneous mechanical dis-
tortions and the onset of Frank elasticity, both of which wewhen the cone anglé= /2 the free energy is zertthe

calculate below. The system finds the optimal degree of nemhyatyral twisted state is achievednd whend=0 the free

atic order. Since the energy scale for nematic ordering i%nergy density is 3/in reduced units, or equivalent&ﬁ(zqé
dominant, we shall for simplicity assume that the ordering i, yea| units (there is neither twist nor bend present and a
given(we indicate below the points at which it entgnsther penalty is paid for not being at the natural state of twds},

than calculating it explicitly as Pelcovits and Mey@] did  The siate of the system will be somewhere between these

in their consideration of this problem. However, the directorg,remes because of the competition with the rubber elastic
configurations and elastic distortions that are adopted OBnergy which we consider below.

transition are not necessarily the optimal ones that would be
found in a r)aturally uniform system because of the geometri- . RUBBER ELASTIC ENERGY
cal competitions between twist, bend, and elongation.
A classical, Gaussian model for the rubber elastic free

Il. CHOLESTERIC TWIST AND BEND ENERGY energy, generalized to nematic elastomers and valid for large

. . . distortions up to many 100%, [§]
The Frank twist-bend elastic energy density is

. . . - Fe=zuTr(fo-AT- €710, 8
Fr=2Ka[n-(VXN)+ o]+ 3Ka[nX(VXN)]%  (4) S
where u is the shear modulus for small distortions in the
When the latter, bend term is absent and elastic effects plagotropic state. The shape ellipsoids characterising the Gauss-
no role, the twist energy will be minimized when twist takes jan chain shape in the isotropic and in the locally nematically
its natural value, that is- (VXn)=—qo. The Frank twist ordered cholesteric states are, respectively,
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{o=as, 9) to the classical transverse cholesteric state. There is a con-
traction alongp of N ,=[(r+1)/2r]¥3<1 associated with
€1=(100,) 5+ (L6~ 1/¢,)nn (10)  this transition.

Returning\ (sir?6) to F one finally obtains a free energy
(the latter being given as its inve)s@he chain anisotropy density that only depends on angle:
r=¢,/¢, , the ratio of the effective step lengths parallel and
perpendicular to the director, will be important. At isotropy, 3arls

r=1 and both these step lengths are equal tdfactor of ¢ Fe=3u TH 27,3

can be extracted fronfi~* to leave behind §— (r—1)nn.

The nematic order induces shape anisotropy via the ratio Before the addition of Frank elastic terms, the rubber elastic
in general for small order —1~Q. For the simple freely free energy is minimal a#=0, that is a uniform state which

jointed rod model of polymers one hdg=a(1+2Q) and  has optimally elongated on entering the nematic state.
€, =a(1—Q) for all values of the order. Inserting the shape

tensors inF one obtains

[2r —(r—1)sir?6]?
r—(r—1)sirte

1/3
"

IV. MINIMIZATION OF THE TOTAL FREE ENERGY

a 1 1 DENSITY
Fe= %#7-”( (N_ n PP+ \/_Ké“”‘mppm [ro We add together the liquid crystal and rubber elastic free
energy densities that have been optimized over all but the
. 1\.. 1 . cone angles:
—(r=1)nn]-| | A\——= + —=0+ Npgmp| |-
(r—1)nn] Ny pp 2t Amo p cole
Fio=Kal) ———————~
(11) or e 1+ (y—1)coge
We multiply this out, using1- p=cos¢ andn-m=sin6 and e 3 [[r+1+(r—1)coge?]*® .
m-p=0, (r—1)2|  1+(r—1)co '
a 2 1 5
Fo= %’u€_ rl a2+ —+)\§qp —(r—1)| cog| \°— — The energy scal&3q;/2 has been extracted as a prefactor.
[ A A The ratio of the rubber elastic to the Frank elastic energy
_ 1, scales is denoted by
+2 SiN6 COSON mp\ + N +)\mpsm20) } (12 y
r
— _1)\2 2 .
The shean ,,, obtains by minimizing= over\ ,, {=[p(r =17 (Ksdo)] ) 223| (18)
_ (r=1)singcosé We refer to this simply as the reduced modulus.
Nmp= r—(r—1)sirP0 A (13 The ratio VK/u(r—1)? (taking a representative Frank

constantK) is the nematic penetration depgh since it de-

The shear vanishes naturally for a transition to a uniformf€rmines how deeply the surface orientation can penetrate
nematic #=0) and also to a standard, transverse cholesteri!to a bulk of a different orientation by the influence of
(0= 7/2) that we shall denote by. One can return the shear Frank elasticity. Mostly, the rubber modulus presents a much
to the free energy to yield a resultant energy dependent updarder energy than that associated with Frank elast{éity

only the cone angle and elongation along the pitch axis, The combination(r —1) is essentiallyD,, the de Gennes
nematic rubber elastic modul{ig] resisting director rotation

a A2 2r — (r—1)sin 62 with respect to the elastic background. The deviatienl
Fo=3 my - + X from isotropy drives the elastic anchorirgjis typically very
ILr=(r—1)sin6 short, about 108 m, unless the rubber modulus or the an-

(14) isotropy are very low. Theg of Pelcovits and Meyer corre-
This energy can in turn be minimized over elongatianat ~ SPONds asp~1K{ to our ratio ¢ with the assorted

fixed cone angle and yields a spontaneous distontjgeon- ~ @-dependent constants in the- - ] of our £ corresponding
ditional on the choice of cone angte to the order parameter-dependent constants in the expression

for B.
s 1 _ _ Thus the measure of the relative energy scale¥ is
M=o [r=(r= 1)sin?][2r —(r—1)sirfA]. (15  ~1/(qgy&)? with some constants that scale harmlessly \@th
in the second - - -] in . We expand this out to see the size
One can check that it yields the usual result for the sponta®f the reduced modulus
neous distortior\,=r*3 for the isotropic to uniform nem- 5 5 1)2
atic case, when si6=0. If the cholesteric energy dominates _[Po}"_[Po Mw —1)2
. S { 60(r—1)<. (19
and sifd=1 (cone angled= 7/2), then the rubber is twisted 2m§ 2m Ks
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1.4
0.4 Ft 9
ot F 1.2 .
0.3 Fr 1 (D)
0.2 Fel Z'Z
0.1 0.4
0.2 0.4 0.6 0.8 1 COSZO 0.2 (11)

FIG. 2. The separate reduced Frarik) and elastic Fo—2) 2 4 ¢ 8 10

free energies as functions of 869‘or.r=3 andy=2. Their. tot{il FIG. 3. Cone angl# against reduced elastic coupliggfor (i)
(Fior—9) is shown for reduced elastic modulgis 5. The shiftsin = =3 y=2_—note the,/ singularity as the classical T state is ap-

two of the free energies are simply to put them on the same gralDr;])'roached.(ii) r=2, y=3, where the transition from conical to

transverse is now discontinuous. Metastable conical states exist be-

. . . . o 711
This estimate is for representative valueg=10 - N for yond the jump but are not shown.

the bend modulusp.=10° Nm~2 for the rubber modulus
and pp=5x10"" m for the intrinsic cholesteric pitch. The
factorr can be estimated from the gel's spontaneous elonga- ~ , 2%°°%1
tion in analogous untwisted nematic phases. For the me- 0"~ 2 Z
chanically very weakly anisotropic gels of Mitchell-1 Y
~0.2 and{~1 can be possible. It is easily possible, if we

take modified estimates df;=2x10"1*N and of u=5 _
X 10 Nm~2, to obtain {~15(r —1)2. For mechanically The development of the cone angle depends on the ratio of

strong anisotropic gels, for instance main chain elastomer&lastic totwistenergies. We denote the conical state by C and
(r—1)~60 and¢ can be large. On the other hand less an-NoW examine the two regimes of its development and loss to

, Kaggd ) Kygg

Moy (r-1%2a  pu
(21)

isotropic gels in this limit could havé<1. the T state. _ N
The equilibrium cone angle is given byF,,/d(cos6) (i) Continuous conical-transverse (C-T) transitiofihe
—0. that is minimum neard=0, that is co%)=1, for large moves as in
’ Fig. 2 to smaller cd® as { decreases. The slope of
1 Foi(COSH) against co® at cog6=0 is dF 4/d coSb,=1

—(r+1)*3 ThusF,,<0 here for largel. If the minimum

approaches c868=0 asF’(0) changes sign, thef, simply
1—co26 has its smallest value at the end of its range, the T state at
cog#=0. Thus the critical value of is

[1+(y—1)cog6]?

:é[r+1+(r—1)co§0]1’3[1+(r—1)00326]4/3'

(20 2(r+1)1/3ﬂ£/3

fe=(r+ 1)1/351“(:: K3QOW a pus’ (22

We show in Fig. 2 the two parts of the reduced free energy
Fr=cog6/(1+(y—1)cog6) and Fe={[r+1+(r B _ _
—1)co§0]2/[1+(r—1)co§0]}1’3 [with the 3¢/(r —1)? factor for the stability of the transv_erse cholesteric when elastic
omitted separately to emphasize the competition. Theeffects are small compared with thoselsind Recall thatr
former is minimal in the transverse cholesteric at%os IS the intrinsic shape anisotropy of the network polymers,
=0 (§=m/2). The latter is minimal in the uniform elongated With r=1 representing isotropy, and-1~Q representing
state, co®=0 (#=0). Their SUMF(co£6) has two quali- the nematic order. _

tatively different behaviors depending ony, and¢ which The T state has been approached cqntmuously from the C
we examine separately below. However, the uniform statgtate. For the example of=3, y=2, Fig. 3 showsf(¢).
(where the cone is lost altogethés neverstable since at the The \/ singularity as§— /2 comes from transforming from

upper end of the range (cas=1) the derivative coggto ¢ as a variable. One can solve E80) analytically

IF ot/ 9(coS$6)=1/y*>0, independently of any elastic ef- around co%—0, that is,#— /2, to obtain this, / singular-
fects which find their absolute minimum th@e sees from ity

Fig. 2 that hereF;,, comes entirely fromFf). For large
modulusu, and hence large reduced moduljsthe result-
ing cone angled is clearly small but nonzero—a conical
helix results from the slightest chiral perturbation because
the transverse shears that it induces as it induces a cone angle
correspond to soft elasticify2]. Expanding relatior{20) for

small & and large{ one obtains at lowest order, or

L Wi
22r24+2r—1 :
3y (Y

cogH~
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1.4}
. 8.14f [
1.3} /1 (1) tot
8.12
1.2} (@)
11
1.1 8.1r
1 8.08
0.9} 5
C 8.06f cos“0
2 4 6 8 10 0.2 0.4 0.6 0.8 1
FIG. 4. Spontaneous distortion against reduced elastic cou-  FIG. 6. Free energyF,, against co® for case (i) r=2,

pling ¢ for (i) r=3, y=2. (i) r=2, y=3, where the final jumpis y=3, where discontinuities arise gsis reduced.
to A=0.909.
(23) that thes~ (¢/{.— 1)? solution for §— =/2 fails at an

’—§/§c— 1 I mc given by the solution of the quadratic
@A e o
3(r+1) Y 3(r+1) -

Figure 4 shows the spontaneous elongation-contraction ) )
along the helix axis. Asymptotically, the unwound state!t IS Straightforward to reanalyze the solution to EG0)
would give \=r3=1.44 relative to its isotropic starting &roundé=m/2 and one obtains
point. The unwound state is far away from the reduced 5= (LI~ 1) Y g (r ), 25)

moduli we display. The C state is evidently stable over a
where the functiorg(r,,o is relatively simple and has the

wide range of modulug. compared with the intrinsic bend

energy scalé& ;2. The Tl%tate contracts rel_ative to the iso- property thaig(r >0 for r ,>1. Thus for eachy there is
tropic state by (r+1)/2r ]**=0.874. Returning the sponta- 5 myiticritical point(that depends on the value 9j where
neous distortion , of Eq. (15) to Eq.(13) gives the optimal  the approach to the transverse cholesteric state with varying

shear\ ,(¢), shown in Fig. 5. Although the shear is very coupling ¢ takes on the power dependence 1/4 rather than
large for a wide range of reduced modufi, (but vanishing 1/,

in the T state for{<{; and in the untwisted state faf (iii ) Discontinuous C-T transitiarBelow the multicriti-
—0) it will be hard to see. It corresponds to displacements;g| pointr <r . the behavior is quite different in that when
in t.he plane per.pendicul_ar to the helix, b}Jt in_a direction  he slopeF/,(co26=0) becomes negative with decreasing
Wh|ch rotates with a period along the helix am_s corres_pondbemw {=(1+1)Y3 there is still a minimum inF,, for
ing to the current wave-vectay of Eq. (6), that is a period  cog¢>0 which can be lower. An example of such a free
p=po[1+(y—1)cosH({)]. Thus the displacement pattern is energy is shown in Fig. 6 for which=2, y=3. When the
fine (submicron and of amplitude~)\mppo, that is rather CO§9min¢0 minimum gives a free energy equal to
small. It is compellingly visualised by Pelcovits and Meyer F,_(cos6,,,=0), then the system jumps from C to T state.
[2]. For this pair ofr and y the jump occurs at &* =1.256
(i) Multicritical C-T transition One can see from Eq. which is easily obtained by solving the conditidh.(0)
=F((COS6,,,,) above. This¢* is markedly less thari,

=(1+r)¥3=1.442. The corresponding variation of cone
0.6 ). angle 8(¢) with reduced elastic modulus is given in Fig. 3
which shows the end of stability & and a continuing set of
0.5 metastable conical states down §e=1.2 that one indeed
0.4 expects below a first-order transitidinis hard to resolve the
metastable interval on the figure since thierange is so
0.3 large). Figures 4 and 5 similarly show the jumps in the spon-
0.2 taneous distortior(to N ,=[(r+1)/2r]**=0.909) and the
shear(to zerg at the end of the C state.
0.1 For smallery, the r at which C-T transitions become
discontinuous is smaller, for instange=2 has discontinuous

z : 6 8 10 transitions below a multicriticat .= 1.5, corresponding to
FIG. 5. Spontaneous shey,, against reduced elastic coupling condition Equation(24) above. The results can be summa-

¢ on making the transition from the isotropic to cholesteric state forfized schematically in Fig. 7. The redl{CGd .mOdU'EléﬂS

(i) r=3, y=2; (i) r=2, y=3, where the final vanishing of shear Where the T state becomes stable and it varies wils (

occurs discontinuously asis reduced. +1)2. Trajectory (i) is a typical second-order transition
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ture prevent total isotropy being attained? The answer is
theoretically yes, though experiments find the degree of chi-
ral order surviving too small to detefi0].

We have shown that on leaving the isotropic state (hat
the untwisted nematic state is always unstable to cholesteric
ordering, if only of a highly conical form(ii) The period of
twist depends on the cone angle but only varies betwren
and yp, where p, is the natural cholesteric pitch ang
=Kj3/K,. (iii) There is a continuous conical to transverse
transition if the reduced modulus is lowered for suitable
(r,y). The C-T transition becomes discontinuous beyond a
multicritical point (f mc,{md, the location of which depends

1 F mc(?’) on vy, a dependence we specify. Variation §fr, and y is
directly or indirectly possible—for instangedepends on the

FIG. 7. Reduced elastic modulysagainst chain anisotropy, nematic order parameter and is known from spontaneous dis-
The line £(r) separates conicdC) and transverséT) cholesteric ~ tortion and optical studies of related nematic elastomers to
states with continuous transitions. Foand below a multicritical ~ vary drastically. It could therefore be possible to observe a
point this line of second-order phase transitions ends and become&gide range of behaviors in making the transition from the
first order, the lineZ* separating the C and T states with a discon-isotropic state of fabrication to the cholesteric state.
tinuous transition. The location of the multicritical point varies with  Fabricating, in the isotropic state, elastomers that might
7, the ratio of the bend to twist Frank elastic constants. undergo a transition to a monodomain C or T cholesteric
state may simply require a variation of the Freiburg tech-

[case(i) discussed abovevhile (ii) is first order[case(ii)]. nique[l_] of making cholesteric monodomain rubber. Biaxial
The multicritical anisotropyr . varies withy by inverting sFretch is effegnvely apphed during the crosslinking process
Eq. (24) which is a simple quadratic in since solvent is Iost.wr.nle the ru_bber adheres toa rigid sub-
A similar problem to this one of competition between strate. The helix axis is then dlre_cted perpendlcglar to the
elastic and twist-bend free energies arises when a cholestef¢ane of stretch. In an isotropic variant of the technique, such
structure is crosslinked into an elastomer and then any chird Stretch would still take place. All directions in the plane
material removed. There is now no natural reason for direcP€ing equal, monodomain cholesteric order could be induced
tor twist. Can the costK,g?2 of retaining this twist be lost PY Spontaneous distortions of the character ofxhef Egs.
by untwisting and incurring some perhaps smaller mechani(?) @1d(3) on entering the ordered phase. This technique, of
cal elastic energy? This is the topological imprinting prob|emprestr_etch|ng during crosslinking, |s_also use(_j in the Freiburg
[8] that reveals a critical balance betweerandK ,q2 where technique to produce monodomain nematic rubber, even
untwisting can occur. We stress that this is not a transitior)(vhen all processing is done in the isotropic state.
between a cholesteric and isotropic state as in this paper, but
one induced by the removal of chiral solvent that induced the
initial twist. | thank R.B. Meyer for suggesting this problem and com-
The converse of the thermal problem that we have askethunicating drafts of Refl.2] to me. | thank H. Finkelmann,
here was posed by de Genri@%—will mechanical compat- R.B. Meyer, M.A. Osipov, R.A. Pelcovits, and E.M. Ter-
ibility constraints on the spontaneous distortions in a cholesentjev for discussions, advice, and a critical reading of this
teric heated above the nematic-isotropic transition temperamanuscript.
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